
Comparison of Different Classifiers for Early Meal
Detection Using Abdominal Sounds

Muhammad Asaad Cheema, Salman Ijaz Siddiqui, Pierluigi Salvo Rossi
Department of Electronic Systems, Norwegian University of Science and Technology

7491 Trondheim, Norway
Email: {asaad.cheema,salman.siddiqui}@ntnu.no, salvorossi@ieee.org

Abstract—One of the challenges for the diabetic patients is
to regulate the amount of glucose in the blood. Early and
reliable meal detection represents one relevant issue to develop
more effective treatments. This paper presents a comparison of
different classifiers for early meal detection using abdominal
sounds. The data presented in the paper is obtained from two
different equipment and the classifiers are trained and tested on
twelve recordings. The results show that neural networks and
convolutional neural networks provide better average detection
time (2.875 min and 2.791 min, respectively) than alternative
methods recently proposed, and no false positives are observed
during testing. Early and reliable meal detection eases the mental
burden of the diabetic patients from documenting every meal in
the controller and also reduces the risk of hypoglycemia.

Index Terms—Acoustic sensors, machine learning, meal detec-
tion.

I. INTRODUCTION

In subjects with Type 1 Diabetes Mellitus (T1DM), the
pancreas produces little or no insulin. In order to regulate the
blood glucose level (BGL) for TIDM patients, the insulin is
infused externally. These infusions need to be administered
closely which is a major concern for people with TIDM
[1]. One of the actively researched solutions for this is the
development of an automated system to regulate the BGL
[2]. Continuous glucose monitoring (CGM) systems are used
nowadays, where a controller administers the insulin infusions
based on the glucose amount observed in the subcutaneous
(SC) tissue. Due to slow absorption of glucose in the SC
tissues, the CGM systems incur a delay of around 40 min in
detecting the meal [3]. In addition to that, the current systems
relies on the patients to input the meal or some information
about the meal content. The patients very often forget about it
and then the controller struggles to maintain the glucose levels.
Hence, there is a need of a robust system which can detect the
meal quickly and reliably. This will ease the mental burden
of the diabetic patients. The reliability of the meal detection
is also important because false meal detection may lead to a
hypoglycemia.

There is a growing interest in using different sensing
modalities in addition to SC glucose sensing. The focus of
this paper is to use audible sounds from the gastronomical tract
for early meal detection. The first attempt of integrating the
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Fig. 1: Cup-shaped microphones.

sound based sensing to artificial pancreas is presented in [4].
Another sound based meal detection system is proposed in [5],
which reported the meal detection time of around 10 minutes
and a true positive rate of 0.5%. In this paper, three machine
learning classifiers (support vector machine (SVM), neural
network (NN) and convolutional neural network (CNN)) are
trained and tested on the abdominal sounds to improve the
detection time as well as the reliability of the meal detection.
The paper is organized as follows: Section II describes the
hardware and how it was used for collecting the acoustic
data; Section III presents the data pre-processing for feature
extraction from the raw acoustic signals and the classifiers
used for meal detection; Section IV illustrates the results; and
finally Section V concludes the paper.

II. EXPERIMENTAL SETUP

A. Hardware

The data presented in the paper were collected from two set
of stethoscopes.

The first one is the Electronic Stethoscope Model 3200
produced by 3M Littmann, which supports single channel data
acquisition. The sampling frequency of this device is 4 kHz.
It was applied to the lower abdomen of the subject under the
umbilicus using medical tape.
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Fig. 2: Complete acquisition system. The red box is the
connection box for powering the microphones. The black box
is the sound card for digitizing the sound signal and a laptop
for saving the data.

The second one is developed by SINTEF Digital AS in
Trondheim, Norway. A knowles electret condenser micro-
phone (product number FG-23329-P07) is fitted inside a
3D-printed cup-shaped plastic cover. The hardware supports
simultaneous multichannel data acquisition up to 4 channels.
The sampling frequency of the microphones is 48 kHz, thus
it can record variety of body sounds. Two microphones are
applied on the left and right of the abdomen under the
umbilicus using double sided tape.

Fig. 1 shows the cup-shaped cover and the microphone
and Fig. 2 shows the complete setup of the data acquisition
system, which includes the (red) connection box for powering
the microphones, a sound card, and a laptop.

Five subjects were available for various types of recording,
and twelve recordings are considered in this work: four
were collected using Littmann stethoscope (all from a single
subject) and eight using 3D-printed stethoscope.

B. Data Acquisition

A slightly different protocol was followed for data acquisi-
tion with each equipment.

In the case of Littmann stethoscope, the subject remained
seated during each recording. For all the recordings, the
subject fasted at least 10 hours before the recording session.
Each recording lasted a total of approximately 60 minutes.
Four out of five meals started 15 minutes after the start of
the recording, while the last one started after 21 minutes of
recording. In the case of 3D-printed stethoscope, the data were
collected on four subjects. The subjects fasted at least 3 hours
before the experiments and the data are collected in sitting
position. In all recordings, the subject started eating 15 minutes
after the start of the recording. After finishing the meal, the
subject was sitting still and silently for additional forty five
minutes to capture the postprandial bowel sounds.

III. DATA PROCESSING

Data-driven binary-classification methods applied to fea-
tures extracted from the raw acoustic signals have been used
to detect the meal.

A. Feature Extraction

The first step is to pre-process the dataset to prepare it as
input to the classifiers for the training purposes. In the pre-
processing phase, 30 minutes of each recording are used (15
minutes before the meal start and 15 minutes after it), and
then acoustic signals are split into consecutive segments of
10 seconds with 50% overlap. Each segment is processed
to produce 41 features, More specifically, feature 1 is the
total power in the range [0, 2000] Hz, feature 2 to feature 21
represent the power in each 100-Hz-band from 0 to 2000 Hz
and feature 22 to feature 41 represent the ratio of the powers in
the respective band and the total power. Features are extracted
and collected in the S ×N feature matrix

X =


X1(1) X2(1) · · · XN (1)
X1(2) X2(2) · · · XN (2)

...
...

. . .
...

X1(S) X2(S) · · · XN (S)

 , (1)

where Xn(s) represents the nth feature extracted from the sth
segment, while S and N denote the numbers of segments and
features, respectively.

The response vector to the feature matrix, i.e. the corre-
sponding label information, has entries with zeros and ones
where 0 (resp. 1) represents absence (resp. presence) of meal.
Based on the built feature matrices, entries corresponding to
the the first 15 minutes are 0s and entries corresponding to
last 15 minutes are 1s, e.g.

y = [0, . . . , 0, 1, . . . , 1]
T

. (2)

B. Classification

Twelve recordings are used for training, validation and
testing purposes: eight are used for training and validation,
while four are used for testing. Leave one out cross-validation
(LOCV) is performed on the eight recording. Picking one meal
out of eight gives eight combinations/folds to train and validate
the classification models.

Three classification techniques are considered (SVM, NN,
and CNN) for providing a soft decision on each segment,
namely ds ∈ [0, 1] is the output of the classifier related
to the sth segment. The detection time for every test meal
is also observed. The binary output from the classifier is
filtered according to an Exponentially Weighted Moving Av-
erage (EWMA) for a final (hopefully more reliable) decision.
EWMA [6] is a sequential change detection procedure that
exploits past observations and applied to reduce the number
of false alarms. EWMA relies on the following equation:

zs = αds + (1− α)zs−1 , (3)

where α is a parameter determining a tradeoff between current
and past values from the classifier. The output (zs) of the
EWMA filtering is then converted to a final binary decision
based on a threshold mechanism.
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1) Support Vector Machine: A radial-basis-function kernel
is being used with tolerance = 0.001 for training purposes.
Unlike the general case of SVM (which gives output in the
form of 0 and 1), probabilities of meal or no meal are taken
out of the trained model to fed the EWMA equation.

2) Neural Network: The NN-based classifier is used with
an input layer with 41 nodes, with 2 hidden layers made of
200 and 100 nodes, respectively, followed by a dropout layer
and a single-node output. Leaky Re-Lu activation function is
used between layers except for the output layer which uses the
sigmoid as activation function. The sigmoid provides output
values between 0 and 1. The overall structural details of the
NN used are:

• Fully connected layer with output size of 200, Batch
normalization, Leaky Re-Lu activation function;

• Fully connected layer with output size of 100, Batch
normalization, Leaky Re-Lu activation function, Dropout
layer;

• Fully connected layer with output size of 1, Sigmoid
activation function.

The means square error is used as the objective function for
training the NN and the stochastic gradient descent is used
with a batch size of 16 and a learning rate of 10−4.

3) Convolutional Neural Network: The CNN-based classi-
fier is built with one 1D-convolutional layer for information
extraction and two fully connected layers for classification
purpose. Leaky Re-Lu activation function is used after each
convolution layer and fully connected layer. Just like for the
NN, the sigmoid has been used to produce output values
between 0 and 1. Dropout layer has been used just before
the output layer to avoid over-fitting. The overall structural
details of the CNN used are:

• 1d Conv with 32 channels and kernel size of 5, Batch
normalization, Leaky Re-Lu activation function;

• Average pooling with window of size=2 and stride=2;
• Fully connected layer with output size of 50, Batch

normalization, Leaky Re-Lu activation function, Dropout
layer;

• Fully connected layer with output size of One, Sigmoid
activation function.

The mean square error is used as the objective function for
training the CNN and the stochastic gradient descent with the
batch size of 16 and learning rate of 10−4.

C. Performance Metrics
Performance of the different considered techniques is as-

sessed and compared in terms of probability of detection (true
positive rate), probability of false alarm (false positive rate),
and detection time. Detection time is obtained by calculating
the difference in the meal start between the response vector
given by Eq. (2) and the predicted vector from the trained
model. The meal start is defined as the time instant when the
label vector transit from 0 to 1.

A false alarm is considered if a meal is predicted from the
trained model, while the actual labels from the response vector
show no meal for some input.
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Fig. 3: ROC curves.

IV. NUMERICAL RESULTS

The classifiers are implemented in python using Pytorch and
Scikit-learn packages. The value of the parameter α in eq. (3)
is set to 0.05. The Receiver Operating Characteristic (ROC)
curve for LOCV is obtained by averaging the validation per-
formance achieved on each fold. ROC curves are computing
based on binary quantization of the soft values provided by the
EWMA post-processing. Moreover, if a classifier is unable to
detect the meal, we put a penalty of 15 minutes to its detection
time. In this analysis, the focus is on reducing the number of
false alarms at the expense of misdetection or higher detection
time. This is because the false alarm leads to serious condition
like hypoglycemia thus having higher cost compared to other
events.

Fig. 3 shows the ROC for each classifier. In the case of
LOCV, the CNN-based classifier is performing better than the
other two type of classifiers. For small false positive rates,
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Fig. 4: Meal detection time.

CNN-, NN- and SVM-based classifiers have true positive
rates close to 63%, 40% and 37%, respectively. For larger
false positive rates larger, the increase of the corresponding
true positive rate is more significant for CNN- and NN-based
classifiers then for the SVM-based classifier. A similar trend
can also be seen when considering the performance on the
test set, although the gaps between all 3 types of classifiers is
reduced.

Fig. 4 shows the detection time for validation and test meals.
The height of each bar represents the detection time in minutes
and different colors represent each classifier. The fold number
is on the x-axis. The detection time refers to models operating
with minimum false alarm rate (via proper selection of the
threshold value). During LOCV, the models are saved for each
fold. For testing, one model is selected such that the detection
time is approximately equal to the average detection time of
all the models. The selected model is tested on four meals and

TABLE I: Meal Detection Result Summary

Classifiers SVM NN CNN

No. of Training Meals (Each Fold) 7 7 7

No. of Validating Meals (Each Fold) 1 1 1

No. of Testing Meals 4 4 4

No. of False Alarms (Test) 0 0 0

No. of False Alarms (LOCV) 0 0 0

Avg. Detection Time in Min (Test) 7.125 2.875 2.791

Avg. Detection Time in Min (LOCV) 8.593 4.895 4.177

the detection time is calculated for each meal.
Apparently, the detection time is much higher in the case of

SVM-based classifiers than NN- and CNN-based classifiers,
except for fold number 1. The detection time of the SVM-
based classifier is 15 minutes in two cases: one during the
testing and one during the training. These cases correspond to
events in which the classifiers completely missed the meal. The
average meal detection times for the SVM-, NN- and CNN-
based classifiers during LOCV are 8.593 min, 4.895 min and
4.177 min, respectively, while 7.125 min, 2.875 min and 2.791
min, respectively, during testing.

Table I summarises the results from the performed ex-
periments and corresponding analysis. CNN-based classifiers
have the best performance both in terms of ROC and in
terms of detection time. NN-based classifiers perform very
close to the CNN, while SVM-based classifiers have much
higher detection times and worse ROC. The threshold and the
corresponding operating point on the ROC have been selected
in order to achieve null false alarm rate in the training phase.
Trained classifiers have kept a null false alarm rate on the
test set as well. The results show a significant improvement
as compared to [5] by reducing the detection time to half and
lesser probability of false alarm.

V. CONCLUSION

The paper compares the meal detection performance of
different classifiers using abdominal sounds. The data pre-
sented in the paper consists of 12 recordings from 5 subjects.
The data are acquired using two set of stethoscopes. The
recordings are split in 8 and 4 sets used for training/validation
and testing, respectively. LOCV is performed for training and
validation and the optimal model is selected for testing. The
average meal detection times for SVM-, NN- and CNN-based
classifiers during LOCV are 8.593 min, 4.895 min and 4.177
min, respectively, while 7.125 min, 2.875 min and 2.791 min,
respectively, during testing. The results show that CNN- and
NN-based classifiers exploit the relationship between features
and the meal intake more effectively, thus exhibiting reduced
detection time and improve reliability for meal detection.
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